Moving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der letzten 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte, um die tatsächlichen Datenpunkte. Moving Averages: Was sind sie Unter den beliebtesten technischen Indikatoren werden gleitende Mittelwerte verwendet, um die Richtung der aktuellen Trend zu messen. Jede Art von gleitendem Durchschnitt (gemeinhin in diesem Tutorial als MA geschrieben) ist ein mathematisches Ergebnis, das durch Mittelung einer Anzahl von vergangenen Datenpunkten berechnet wird. Sobald es bestimmt ist, wird der daraus resultierende Mittelwert dann auf eine Tabelle aufgetragen, um es den Händlern zu ermöglichen, auf geglättete Daten zu schauen, anstatt sich auf die täglichen Preisschwankungen zu konzentrieren, die in allen Finanzmärkten inhärent sind. Die einfachste Form eines gleitenden Durchschnitts, der als einfacher gleitender Durchschnitt (SMA) bekannt ist, wird berechnet, indem das arithmetische Mittel eines gegebenen Satzes von Werten genommen wird. Um beispielsweise einen gleitenden 10-Tage-Durchschnitt zu berechnen, würden Sie die Schlusskurse der letzten 10 Tage addieren und dann das Ergebnis mit 10 teilen. In Abbildung 1 ist die Summe der Preise für die letzten 10 Tage (110) Geteilt durch die Anzahl von Tagen (10), um den 10-Tage-Durchschnitt zu erreichen. Wenn ein Trader einen 50-Tage-Durchschnitt sehen möchte, würde die gleiche Art der Berechnung gemacht, aber er würde auch die Preise in den letzten 50 Tagen enthalten. Der daraus resultierende Durchschnitt unter (11) berücksichtigt die letzten 10 Datenpunkte, um den Händlern eine Vorstellung davon zu geben, wie ein Vermögenswert im Verhältnis zu den vergangenen 10 Tagen bewertet wird. Vielleicht fragen Sie sich, warum technische Händler nennen dieses Tool einen gleitenden Durchschnitt und nicht nur ein normaler Durchschnitt. Die Antwort ist, dass, wenn neue Werte verfügbar werden, die ältesten Datenpunkte aus dem Satz fallen gelassen werden müssen und neue Datenpunkte hereinkommen müssen, um sie zu ersetzen. Somit bewegt sich der Datensatz ständig auf neue Daten, sobald er verfügbar ist. Diese Berechnungsmethode stellt sicher, dass nur die aktuellen Informationen berücksichtigt werden. Wenn in Fig. 2 der neue Wert von 5 zu dem Satz hinzugefügt wird, bewegt sich das rote Feld (das die letzten 10 Datenpunkte darstellt) nach rechts und der letzte Wert von 15 wird aus der Berechnung entfernt. Weil der relativ kleine Wert von 5 den hohen Wert von 15 ersetzt, würden Sie erwarten, dass der Durchschnitt des Datensatzabbaus zu sehen, was er tut, in diesem Fall von 11 bis 10. Wie sehen sich die gleitenden Mittelwerte aus? MA berechnet worden sind, werden sie auf ein Diagramm aufgetragen und dann verbunden, um eine gleitende mittlere Linie zu erzeugen. Diese Kurvenlinien sind auf den Diagrammen der technischen Händler üblich, aber wie sie verwendet werden, können drastisch variieren (mehr dazu später). Wie Sie in Abbildung 3 sehen können, ist es möglich, mehr als einen gleitenden Durchschnitt zu irgendeinem Diagramm hinzuzufügen, indem man die Anzahl der Zeitperioden, die in der Berechnung verwendet werden, anpasst. Diese kurvenreichen Linien scheinen vielleicht ablenkend oder verwirrend auf den ersten, aber youll wachsen Sie daran gewöhnt, wie die Zeit vergeht. Die rote Linie ist einfach der durchschnittliche Preis in den letzten 50 Tagen, während die blaue Linie der durchschnittliche Preis in den letzten 100 Tagen ist. Nun, da Sie verstehen, was ein gleitender Durchschnitt ist und wie es aussieht, stellen Sie auch eine andere Art von gleitenden Durchschnitt ein und untersuchen, wie es sich von der zuvor genannten einfachen gleitenden Durchschnitt unterscheidet. Die einfache gleitende Durchschnitt ist sehr beliebt bei den Händlern, aber wie alle technischen Indikatoren, hat es seine Kritiker. Viele Personen argumentieren, dass die Nützlichkeit der SMA begrenzt ist, da jeder Punkt in der Datenreihe gleich gewichtet wird, unabhängig davon, wo er in der Sequenz auftritt. Kritiker argumentieren, dass die neuesten Daten bedeutender sind als die älteren Daten und sollten einen größeren Einfluss auf das Endergebnis haben. Als Reaktion auf diese Kritik begannen die Händler, den jüngsten Daten mehr Gewicht zu verleihen, was seitdem zur Erfindung verschiedener Arten von neuen Durchschnittswerten geführt hat, wobei der populärste der exponentielle gleitende Durchschnitt (EMA) ist. (Für weitere Messwerte siehe Grundlagen der gewichteten gleitenden Mittelwerte und was ist der Unterschied zwischen einer SMA und einer EMA) Exponentieller gleitender Durchschnitt Der exponentielle gleitende Durchschnitt ist eine Art von gleitendem Durchschnitt, die den jüngsten Preisen mehr Gewicht verleiht, um sie reaktionsfähiger zu machen Zu neuen Informationen. Das Erlernen der etwas komplizierten Gleichung für die Berechnung einer EMA kann für viele Händler unnötig sein, da fast alle Kartierungspakete die Berechnungen für Sie durchführen. Jedoch für Sie Mathegeeks heraus dort, ist hier die EMA-Gleichung: Wenn Sie die Formel verwenden, um den ersten Punkt der EMA zu berechnen, können Sie feststellen, dass es keinen Wert gibt, der als das vorhergehende EMA benutzt werden kann. Dieses kleine Problem kann gelöst werden, indem man die Berechnung mit einem einfachen gleitenden Durchschnitt beginnt und mit der obigen Formel von dort fortsetzt. Wir haben Ihnen eine Beispielkalkulationstabelle zur Verfügung gestellt, die praktische Beispiele enthält, wie Sie sowohl einen einfachen gleitenden Durchschnitt als auch einen exponentiellen gleitenden Durchschnitt berechnen können. Der Unterschied zwischen der EMA und SMA Nun, da Sie ein besseres Verständnis haben, wie die SMA und die EMA berechnet werden, können wir einen Blick darauf werfen, wie sich diese Mittelwerte unterscheiden. Mit Blick auf die Berechnung der EMA, werden Sie feststellen, dass mehr Wert auf die jüngsten Datenpunkte gelegt wird, so dass es eine Art von gewichteten Durchschnitt. In Abbildung 5 sind die Anzahl der Zeitperioden, die in jedem Durchschnitt verwendet werden, identisch (15), aber die EMA reagiert schneller auf die sich ändernden Preise. Beachten Sie, wie die EMA einen höheren Wert hat, wenn der Preis steigt, und fällt schneller als die SMA, wenn der Preis sinkt. Diese Reaktionsfähigkeit ist der Hauptgrund, warum viele Händler es vorziehen, die EMA über die SMA zu verwenden. Was sind die verschiedenen Tage Durchschnittliche Mittelwerte sind eine völlig anpassbare Indikator, was bedeutet, dass der Benutzer frei wählen können, was Zeitrahmen sie bei der Schaffung der durchschnittlichen wollen. Die häufigsten Zeitabschnitte, die bei gleitenden Durchschnitten verwendet werden, sind 15, 20, 30, 50, 100 und 200 Tage. Je kürzer die Zeitspanne, die verwendet wird, um den Durchschnitt zu erzeugen, desto empfindlicher wird es für Preisänderungen sein. Je länger die Zeitspanne, desto weniger empfindlich, oder mehr geglättet, wird der Durchschnitt sein. Es gibt keinen richtigen Zeitrahmen für die Einrichtung Ihrer gleitenden Mittelwerte. Der beste Weg, um herauszufinden, welche am besten für Sie arbeitet, ist es, mit einer Reihe von verschiedenen Zeitperioden zu experimentieren, bis Sie eine finden, die zu Ihrer Strategie passt. Moving Averages: So verwenden Sie ThemHow zu berechnen, Moving Averages in Excel Excel-Datenanalyse für Dummies, 2nd Edition Der Data Analysis-Befehl bietet ein Werkzeug für die Berechnung der verschobenen und exponentiell geglätteten Mittelwerte in Excel. Nehmen Sie an, um zu veranschaulichen, dass Sie tägliche Temperaturinformationen gesammelt haben. Sie wollen den dreitägigen gleitenden Durchschnitt 8212 den Durchschnitt der letzten drei Tage 8212 als Teil einer einfachen Wettervorhersage berechnen. Gehen Sie folgendermaßen vor, um die gleitenden Mittelwerte für diesen Datensatz zu berechnen. Um einen gleitenden Durchschnitt zu berechnen, klicken Sie zuerst auf die Schaltfläche Data tab8217s Data Analysis. Wenn Excel das Dialogfeld Datenanalyse anzeigt, wählen Sie aus der Liste den Eintrag Moving Average aus, und klicken Sie dann auf OK. Excel zeigt das Dialogfeld "Gleitender Durchschnitt" an. Identifizieren Sie die Daten, die Sie verwenden möchten, um den gleitenden Durchschnitt zu berechnen. Klicken Sie im Dialogfeld "Gleitender Durchschnitt" in das Eingabebereichsfeld. Identifizieren Sie dann den Eingabebereich, indem Sie entweder eine Arbeitsbereichsadresse eingeben oder mit der Maus den Arbeitsbereich auswählen. Ihre Bereichsreferenz sollte absolute Zellenadressen verwenden. Eine absolute Zellenadresse ist dem Spaltennamen und der Zeilennummer mit Vorzeichen vorangestellt, wie in A1: A10. Wenn die erste Zelle in Ihrem Eingabebereich eine Textbeschriftung enthält, um Ihre Daten zu identifizieren oder zu beschreiben, aktivieren Sie das Kontrollkästchen Labels in First Row. Erklären Sie im Textfeld Interval, wie viele Werte in die gleitende Durchschnittsberechnung einbezogen werden sollen. Sie können einen gleitenden Durchschnitt mit einer beliebigen Anzahl von Werten berechnen. Standardmäßig verwendet Excel die letzten drei Werte, um den gleitenden Durchschnitt zu berechnen. Um festzulegen, dass eine andere Anzahl von Werten zur Berechnung des gleitenden Durchschnitts verwendet werden soll, geben Sie diesen Wert in das Textfeld Intervall ein. Sagen Sie Excel, wo die gleitenden Durchschnittsdaten platziert werden sollen. Verwenden Sie das Textfeld Ausgabebereich, um den Arbeitsblattbereich zu identifizieren, in dem Sie die gleitenden Durchschnittsdaten platzieren möchten. In dem Arbeitsblattbeispiel wurden die gleitenden Durchschnittsdaten in den Arbeitsblattbereich B2: B10 platziert. (Optional) Geben Sie an, ob ein Diagramm gewünscht wird. Wenn Sie ein Diagramm möchten, das die gleitenden Durchschnittsinformationen darstellt, aktivieren Sie das Kontrollkästchen "Diagrammausgabe". (Optional) Geben Sie an, ob Standardfehlerinformationen berechnet werden sollen. Wenn Sie Standardfehler für die Daten berechnen möchten, aktivieren Sie das Kontrollkästchen Standardfehler. Excel legt Standardfehlerwerte neben den gleitenden Mittelwerten fest. (Die Standardfehlerinformationen gehen zu C2: C10.) Nachdem Sie die Angabe, welche gleitenden durchschnittlichen Informationen Sie berechnen lassen möchten und wo Sie sie platzieren möchten, klicken Sie auf OK. Excel berechnet gleitende Durchschnittsinformationen. Hinweis: Wenn Excel doesn8217t über genügend Informationen verfügt, um einen gleitenden Durchschnitt für einen Standardfehler zu berechnen, legt er die Fehlermeldung in die Zelle. Sie können mehrere Zellen sehen, die diese Fehlermeldung als einen Wert anzeigen.
No comments:
Post a Comment